Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermoelectric efficiency in graded indium-doped PbTe crystals

Identifieur interne : 000728 ( Russie/Analysis ); précédent : 000727; suivant : 000729

Thermoelectric efficiency in graded indium-doped PbTe crystals

Auteurs : RBID : Pascal:02-0384420

Descripteurs français

English descriptors

Abstract

High efficiency thermoelectric conversion is achieved by using materials with a maximum figure of merit Z=S2σ/k, where S is the Seebeck coefficient, σ and k, the electrical and thermal conductivities, respectively. High quality homogeneous thermoelectric materials, based on PbTe crystals, usually display an elevated value of Z over a narrow temperature range. A maximal value of figure of merit Z, as a function of electron density, is attained only for one specific location of the Fermi level, EF, with respect to the conduction band edge, EC. In order to maintain this optimal Z value, namely, maintain a constant location of the Fermi level, the electron density, which is determined by the dopant concentration, must increase with increasing temperature. We present a method for the generation of a dopant (indium) concentration profile in n-type PbTe crystals that gives rise to a constant location of the Fermi level, and hence, to an optimal value of Z over a wide temperature range. The resulting functionally graded material, based on PbTeIn, displays a practically constant value of the Seebeck coefficient, over the 50-600°C temperature range. © 2002 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0384420

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thermoelectric efficiency in graded indium-doped PbTe crystals</title>
<author>
<name sortKey="Dashevsky, Z" uniqKey="Dashevsky Z">Z. Dashevsky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105</wicri:regionArea>
<wicri:noRegion>Beer-Sheva 84105</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Chemical Problems for Microelectronics, Moscow 109017, Russia</s1>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Chemical Problems for Microelectronics, Moscow 109017</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shusterman, S" uniqKey="Shusterman S">S. Shusterman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105</wicri:regionArea>
<wicri:noRegion>Beer-Sheva 84105</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dariel, M P" uniqKey="Dariel M">M. P. Dariel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105</wicri:regionArea>
<wicri:noRegion>Beer-Sheva 84105</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Drabkin, I" uniqKey="Drabkin I">I. Drabkin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105</wicri:regionArea>
<wicri:noRegion>Beer-Sheva 84105</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0384420</idno>
<date when="2002-08-01">2002-08-01</date>
<idno type="stanalyst">PASCAL 02-0384420 AIP</idno>
<idno type="RBID">Pascal:02-0384420</idno>
<idno type="wicri:Area/Main/Corpus">00EE60</idno>
<idno type="wicri:Area/Main/Repository">00DF69</idno>
<idno type="wicri:Area/Russie/Extraction">000728</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Conduction bands</term>
<term>Electron density</term>
<term>Experimental study</term>
<term>Fermi level</term>
<term>IV-VI semiconductors</term>
<term>Indium</term>
<term>Lead compounds</term>
<term>Seebeck effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7220P</term>
<term>7280J</term>
<term>7220J</term>
<term>7120N</term>
<term>Etude expérimentale</term>
<term>Plomb composé</term>
<term>Semiconducteur IV-VI</term>
<term>Indium</term>
<term>Effet Seebeck</term>
<term>Densité électron</term>
<term>Niveau Fermi</term>
<term>Bande conduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High efficiency thermoelectric conversion is achieved by using materials with a maximum figure of merit Z=S
<sup>2</sup>
σ/k, where S is the Seebeck coefficient, σ and k, the electrical and thermal conductivities, respectively. High quality homogeneous thermoelectric materials, based on PbTe crystals, usually display an elevated value of Z over a narrow temperature range. A maximal value of figure of merit Z, as a function of electron density, is attained only for one specific location of the Fermi level, E
<sub>F</sub>
, with respect to the conduction band edge, E
<sub>C</sub>
. In order to maintain this optimal Z value, namely, maintain a constant location of the Fermi level, the electron density, which is determined by the dopant concentration, must increase with increasing temperature. We present a method for the generation of a dopant (indium) concentration profile in n-type PbTe crystals that gives rise to a constant location of the Fermi level, and hence, to an optimal value of Z over a wide temperature range. The resulting functionally graded material, based on PbTeIn, displays a practically constant value of the Seebeck coefficient, over the 50-600°C temperature range. © 2002 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>92</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thermoelectric efficiency in graded indium-doped PbTe crystals</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DASHEVSKY (Z.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHUSTERMAN (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DARIEL (M. P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DRABKIN (I.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Chemical Problems for Microelectronics, Moscow 109017, Russia</s1>
</fA14>
<fA20>
<s1>1425-1430</s1>
</fA20>
<fA21>
<s1>2002-08-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0384420</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>High efficiency thermoelectric conversion is achieved by using materials with a maximum figure of merit Z=S
<sup>2</sup>
σ/k, where S is the Seebeck coefficient, σ and k, the electrical and thermal conductivities, respectively. High quality homogeneous thermoelectric materials, based on PbTe crystals, usually display an elevated value of Z over a narrow temperature range. A maximal value of figure of merit Z, as a function of electron density, is attained only for one specific location of the Fermi level, E
<sub>F</sub>
, with respect to the conduction band edge, E
<sub>C</sub>
. In order to maintain this optimal Z value, namely, maintain a constant location of the Fermi level, the electron density, which is determined by the dopant concentration, must increase with increasing temperature. We present a method for the generation of a dopant (indium) concentration profile in n-type PbTe crystals that gives rise to a constant location of the Fermi level, and hence, to an optimal value of Z over a wide temperature range. The resulting functionally graded material, based on PbTeIn, displays a practically constant value of the Seebeck coefficient, over the 50-600°C temperature range. © 2002 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70B20P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70B80J</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70B20J</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7220P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7280J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7220J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7120N</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Plomb composé</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Lead compounds</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Semiconducteur IV-VI</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>IV-VI semiconductors</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet Seebeck</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Seebeck effect</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Densité électron</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electron density</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Fermi level</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Bande conduction</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Conduction bands</s0>
</fC03>
<fN21>
<s1>210</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0229M000163</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000728 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000728 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:02-0384420
   |texte=   Thermoelectric efficiency in graded indium-doped PbTe crystals
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024